
4 Normable and Banach spaces

It is trivial to see that a translational-invariant metric comes from a norm if and
only if it is homogeneous with respect to scalar multiplication. A bit more profound
is the following theorem about the normability of a tvs topology:

Theorem 4.1 A Hausdorff tvs V is normable if and only if V is locally convex and
locally s-bounded.

Proof. Local convexity and local s-boundedness are obviously necessary as balls
are always convex and s-bounded. But the the condition is also sufficient: Take
an s-bounded zero neighborhood and a convex subneighborhood U of it, then its
Minkowski functional µU is a seminorm on V which is even a norm: Given v 6= 0,
take any starshaped 0-neighborhood W which does not contain v. Then there is
a λ > 0 with U ⊂ λW , and it is easy to see that λv /∈ U . Again because of s-
boundedness, the sets n−1U , n ∈ N, form a local basis. Therefore µU generates the
topology. 2

Exercise: Which tvs known up to here are normable? In particular show that
the spaces C∞(A, K ) for A compact and Ck(U, K ) with the metric defined by a
compact exhaustion are not normable.

Definition 4.2 A map A : V → W between Banach spaces is bounded if there is
a C ∈ R with ||Av|| ≤ C||v|| for all v ∈ V .

Theorem 4.3 A linear map between Banach spaces is continuous if and only if it
is bounded.

Proof. Consider the unit ball B := B1(0) ⊂ W . Its preimage A−1(B) is an open
neighborhood of 0, so it contains a ball Bε(0). Using the linearity of A it is now
easy to see that A is bounded by ε−1. 2

Remark: A motivation for generalizing the notion of Banach spaces towards
Fréchet spaces is the fact that there is no Banach space structure on the space
of smooth sections of a vector bundle such that the covariant derivative in the di-
rection of any nonzero vector field on the base be continuous. This is seen by noting
that in Banach spaces continuity is equivalent to boundedness, and by constructing
sections which are eigenvectors with arbitrarily high eigenvalues of the derivative
or its square (most easily seen in C∞(S 1, R) with fK(x) = K−1sin(K2x)).

Theorem 4.4 (Arzela-Ascoli Theorem) Let K be a compact Hausdorff space
and let S ⊂ C(K) := C0(K, K ). Then S is compact if and only if S is bounded and
equicontinuous.

Proof. W.r.o.g. assume K, S 6= ∅. If S is compact, we choose r > 0 and x ∈ K. By
compactness, S is ball-finite, so choose f1..., fn ∈ S with

⋃n
i=1 Br/3(fi) covers S. By

intersection of neighborhoods, let Ux,r be a neighborhood of x with |fi(y)−fi(x)| <
r/3 for all i = 1, ..., n and all y ∈ Ux,r. Now by the usual ε/3-argument, we have
that for every f ∈ S and y ∈ Ux,r, |f(y)− f(x)| < r, therefore S is equicontinuous
(and bounded by precompactness).
Conversely, if S is bounded and equicontinuous, choose an r > 0 and define, for every
x ∈ K, a neighorhood Ux,r such that for every f ∈ S, |f(y)− f(x)| < r/3, for every
y ∈ Ux,r. As K is compact, there are x1, ...xm ∈ K with K ⊂

⋃m
i=1 Uxi,r, thus D :=

{(f(x1), ..., f(xm))|f ∈ S} is a bounded subset of Rm in the sup metric and therefore
ball-finite, so there are f1, ..., fn ∈ S with D ⊂

⋃n
i=1 Bsup

r/3 (fi(x1), ..., fi(xm)). Now
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for every x ∈ K and f ∈ S there is a k ∈ {1, ...,m} such that x ∈ Uxk,r, and
an l ∈ {1, ...n} with (f(x1), ..., f(xm)) ∈ Bsup

r/3 (fl(x1), ...fl(xm)), and with an ε/3-
argument we see easily that f(x) − fl(x) ≤ r for every x ∈ K, therefore S is
ball-finite and thus precompact. 2

Now, for a given compact topological space M and a Banach space B we consider the
space C0(M,B) with the supremum norm. For M = [0, 1] we write C0([0, 1], B) =:
C. We want to show that there is no nice differentiable function on C which is
boundedly supported, i.e., with support contained in a ball. Let F,G be Banach
spaces and U ⊂ F open. We call a map f : U → G Fréchet differentiable
iff it is continuously differentiable (cf Part 1) and if df : U → L(F,G) defined by
df(u)(x) := f ′(u, x) takes values in BL(F,G) and is continuous from U to BL(F,G),
the latter as usual topologized by the operator norm. The importance of Fréchet
differentiability lies in its better behaviour in Inverse Function Theorems.
(For the people of the DG course: E.g., we have seen that Fréchet differentiable
vector fields have a local flow while differentiable vector fields in general don’t!)
We denote the space of Fréchet differentiable maps by CF 1(U,G). The construction
of spaces of higher Fréchet differentiability is straightforward.

Theorem 4.5 ([?], Theorem 14.9) Let f ∈ CF 1(C, R) be nontrivial. Then f is
not boundedly supported.

Proof. It is sufficient to show that for every nontrivial f ∈ CF 1(C, R) with f(0) = 0
there is an x ∈ B2(0) \ B1(0) with f(x) ≤ ||x||: indeed, if this is the case, let f0 ∈
CF 1(C, R) be nontrivial and have its support in BR(0). Then by concatenation with
the multiplication by (4R)−1 we define a nontrivial element f1 of CF 1(C, R) with
support contained in B1/4(0). By choosing a point x ∈ B1/4(0) with f1(x) 6= 0 and
defining tw(v) = v +w we getthat f2 := f1 ◦ tx ∈ CF 1(C)\{0}, supp(f2) ⊂ B1/2(0)
and f2(0) 6= 0. Then f3 := (f2(0))−1 · f2 ∈ CF 1(C) \ {0}, supp(f3) ⊂ B1/2(0),
f3(0) = 1, and f4 := 3− 3f3 ∈ CF 1(C) \ {0}, f4(0) = 0 and f4(x) = 3 for all x with
||x|| ≥ 1 in contradiction to the assumption.
Our strategy will be to define iteratively a sequence {xi}i∈N in the subset {f(x) ≤
||x||}, beginning with x0 = 0 about which we will show that after finitely many
terms it ends up in B2(0) \B1(0). Let 0 < ε < 1 be given. For a given xi we define

U ε
i := U(xi, ε) := {y ∈ C|f(y) ≤ ||y||, ||y − xi|| ≤ 1, ||y|| − ||xi|| ≥ ε/8 · ||y − xi||}.

For every x ∈ {f(x) ≤ ||x||} the set U(xi, ε) is nonempty as it contains x itself.
Therefore M

(ε)
i := sup{||y − xi|| : y ∈ U

(ε)
i } ≤ 1 well-defined, and we choose

xi+1 ∈ U
(ε)
i with ||xi+1 − xi|| ≥ M

(ε)
i /2. Now we want to show that there is an

m ∈ N with ||xm|| ≥ 1. If this is not the case, the sequence ||xi|| is monotonously
increasing and bounded (because of the third condition for U

(ε)
i , and with the same

condition one sees that xi is a Cauchy sequence, thus it has a limit L with ||L|| > 0
(as otherwise U

(ε)
0 = {0} and therefore f > || · || in B1(0), and then f would not be

differentiable in the origin: consider it along a straight line through 0). Therefore
we have 0 < ||L|| ≤ 1 and f(L) ≤ ||L||. As f ∈ CF 1(C), there is a δ > 0 with

f(L + u)− f(L)− df(L) · u ≤ ε/8 · ||u||

for all u ∈ C with ||u|| < δ (w.r.o.g. δ ≤ 1, δ ≤ 2||L||). Now we need a lemma:

Lemma 4.6 For all σ, τ > 0, τ < 1, and for all g ∈ C, there is an h ∈ B1(0) ⊂ C
with
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||g + th|| > ||g||+ τ |t| − σ,

for all |t| < ||g||.

Proof of the lemma. Given g as above, take

Uτ := f−1([−||f ||,−||f ||+ τ) ∪ (||f || − τ,−||f ||])

and choose hσ,τ such that {τ} ∪ {−τ} ⊂ hσ,τ (Uτ ).

Now choose g := L, τ := ε/2, σ := εδ/8 and abbreviate hσ,t = h. Define t :=
−sign(df(L) · h) · δ/2.
Then |t| < ||L|| and L + th ∈ U(L, ε) as we have the strict inequalities

||L + th|| > ||L||+ εδ/8 ≥ f(L) + ε/8 · ||th||,
||L + th− L|| = |t| · ||h|| < δ ≤ 1,

||L + th|| − ||L|| > εδ/8 > ε||th||/8

(the last inequality of the first line holds as we can omit the term containing df
as we have chosen its sign correctly). As those are strict inequalities and because
of continuity of f and the norm, they also hold for large xi instead of L. Thus
M

(ε)
i ≥ ||L+th−xi|| > εδ/8 by the triangle inequality and ||th|| > εδ/8, ||h|| > 3/4.

Therefore ||xi+1 − xi|| > εδ/16 for all i which contradicts the Cauchy condition.
2

The result is transferred immediately to Ck([0, 1], B) by the following theorem
(which is a special case of a theorem by Milutin but can be proved in a shorter
way as follows):

Theorem 4.7 Let E be a Fréchet space. For each k ∈ N, there is an isomorphism
of topological vector spaces between C0([0, 1], E) =: C([0, 1], E) and Ck([0, 1], E).

Proof. First we construct an isomorphism I1 : Ck([0, 1], E) → Ek ×C([0, 1], E) by
I1(c) = (c(0), ...c(k−1)(0), c(k)) where c(i) is the i-th derivative of c (an invese is given
by the integral which is well-defined in Fréchet spaces). Now we want to show that
for all m ∈ N, there is a second isomorphism I2 : C([0, 1], E) ∼= Em × C([0, 1], E).
Let C0([0, 1], E) be the subset of C([0, 1], E) of all elements c with c(0) = 0, then
we have an isomorphism i : C([0, 1], E) → C0E × ([0, 1], E) by i(c) = (c(0), c −
c(0)). Thus it remains to construct an isomorphism I2 : C0([0, 1], E) → Em ×
C0([0, 1], E). For a Fréchet space E, let c(E) denote the Fréchet space of bounded
sequences in E with the supremum topology. To this purpose, first we construct
an isomorphism J : C0([0, 1], E) → c(E) × c(C0,1([0, 1], E)) where C0,1([0, 1], E)
means the subspace of C([0, 1], E) consisting of all elements c with c(0) = 0 = c(1).
We define J by J(c) = (J1(c), J2(c)) with (J1(c))n = c(2−n) and (J2(c))n(t) :=
c(2−nt) − c(2−n) · t. Then use the isomorphism K : c(E) → Em × c(E) given by
(K(a))n = ((a1, ...am), (am+1, ...)). Finally put together the isomorphisms to get
the desired isomorphism. 2

Theorem 4.8 Let X be a Banach space, ∅ 6= A ⊂ X compact and convex. Then
there is a continuous projection PA : X → A, PA ◦ PA = PA, with

||x− PA(x)|| = dist(x,A).
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Proof: Exercise. 2

Example: We want to construct a Schauder basis for C0([0, 1]) =: C. Historically,
it is the first example of a Schauder basis of a non-Hilbertable space (by Schauder,
1927). The first two elements s0 and s1 we define by s0(t) := 1, s1(t) := t. For
n ≥ 2, we define sn by first defining mn ∈ Z s.t. 2m−1 < n ≤ 2m and then

sn(t) := 2m(t− (
2n− 2

2m
− 1)) for

2n− 2
2m

− 1 ≤ t <
2n− 1

2m
− 1,

sn(t) := 1− 2m(t− (
2n− 1

2m
− 1)) for

2n− 1
2m

− 1 ≤ t <
2n

2m
− 1,

and zero otherwise (don’t worry, we will draw these functions in the exercise!).
Define inductively a sequence i 7→ pi ∈ C by p0 := f(0)s0,

αi := f(
2n− 1
2mn

− 1)− pi−1(
2n− 1
2mn

− 1)

and

pi := pi−1 + αi · si.

Then pi agrees with f in i points and interpolates linearly betwen them. It is easy
to see that pm =

∑m
i=0 αisi for all m. As the interval is compact, uniform continuity

of f implies that limm→∞||f − pm||∞ = 0, thus f =
∑

i∈N αnsn.
For uniqueness, let βn be a sequence of real numbers with f =

∑
i∈N βisi, then∑

i∈N(αi−βi)si = 0 and therefore
∑

(αi−βi)si(t) = 0 for all t of the form 2n−1
2mn −1,

thus αi = βi for all i. Therefore the si form a Schauder basis for C, which is
moreover normalized.

Exercise: Encuentren una base de Schauder para Lp([0, 1])! Hay una sucesión de
funciones que es una base de Schauder normalizada para cada Lp?

Theorem 4.9 Let X be a Banach space with a Schauder basis {en}. Let Pn be the
projections x 7→ xnen if x =

∑
i∈N xiei. Then supn∈N||Pn|| is finite.

Proof: Exercise. 2

It is easy to see that, for a Banach space space X, B(X) := BL(X, X) forms a
Banach algebra by pointwise addition and composition. Algebraically invertible
elements of B(X) have always inverse elements in B(X) by the Open mapping
theorem, therefore the subset GL(X) of invertible elements is a subgroup. Now we
want to focus on an interesting ideal of B(X), the ideal of compact operators:

Definition 4.10 Let X, Y be tvs. A linear map f ∈ CL(X, Y ) is called compact
if f(U) is compact for every s-bounded set U ⊂ X.

Remarks: If X is Banach, then obviously it is enough to require that the image
of the unit ball be precompact. If X, Y are Banach, A ∈ CL(X, Y ) with finite-
dimensional image, then A is obviously compact. Conversely:
Exercise: If X is normable and Y metrizable, A ∈ B(X, Y ) compact with closed
image, then A(X) is finite-dimensional.
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Theorem 4.11 Let X be a Banach space. The compact operators form a closed
ideal subalgebra CP (X) of BL(X). Ideal means that CP (X) · BL(X), BL(X) ·
CP (X) ⊂ CP (X).

Proof. CP (X) is a linear subspace, as multiples and sums of finite compact subsets
are compact. The ideal property is by definition. The closedness comes by an
ε/3-argument: Let A ∈ CP (X) and r > 0. Then there is a B ∈ CP (X) with
||B − A|| < r/3. Now as B(B1(0)) is ball-finite, there are x1...xn ∈ B1(0) s.t.
Br/3(B(xi)) cover B(B1(0)). But then, by the triangle inequality, Br(B(xi)) cover
A(B1(0)). 2

Theorem 4.12 Let X, Y be Banach spaces and f ∈ CL(X, Y ). Then f(X) is
closed in Y if and only if there is an r > 0 with ||fx|| ≥ r||x||.

Proof: Exercise. 2

Theorem 4.13 Let X be a Banach space, A ∈ CP (X), s ∈ K \{0}. Then ker(A−
s1) is finite-dimensional.

Proof. Restrict A to K := ker(A − s1). The A|K : K → K is compact, and its
image K, being a kernel, is closed. Thus the theorem follows from the previous
exercis. 2

Theorem 4.14 Let X be a Banach space, let s ∈ K \ {0}, let A ∈ BL(X) be
compact. Then As := (A− s1)X is closed.

Proof. By Theorem 4.13, ker(A−s1) is finite-dimensional. Let M be its topological
complement. Obviously As is bounded linear and injective on M , with As(M) =
As(X). To show that As(M) is closed, it is enough to find an r > 0 with ||Asx|| ≥
r||x|| by Theorem 4.12. So if there is no such r, then there is a sequence of unit
vectors xi with As(xi) → 0. By compactness this contains a subsequence such that
Axn → l ∈ X. Therefore sxn → l, and thus l ∈ M , and Asl = lim(sAsxn) = 0.
But as Sa is injective on M , we get l = 0. On the other hand, || sxn|| → s 6= 0, a
contradiction. 2

Theorem 4.15 Let Y be a non-dense subspace of a normed space X, then for every
r > 1 there is an x ∈ X with

||x|| < r, ||x− y|| ≥ 1 ∀y ∈ Y.

Proof. Choose (by scaling) an x0 ∈ X with d(x0, Y ) = 1, then choose an y0 ∈ Y
with ||x0 − y0|| < r and define x := x0 − y0. 2

Theorem 4.16 Let X be a Banach space and A ∈ BL(X) be compact. Then, for
every s 6= 0 eigenvalue of A, the map As := A − s1 is not surjective. Given an
r > 0, let Er be the set of eigenvalues s of A with |s| ≥ r. Then Er is finite.

Proof. We will show that the negation of either statement implies that there are
closed subspaces Yn ( Yn+1 and s(n) ∈ K , with A(Yn) ⊂ Yn and As(n+1)(Yn+1) ⊂
Yn, both for all n ∈ N. Then by Theorem 4.15 we choose vectors yn ∈ Yn for
n ≥ 2 with yn ≤ 2 and dist(yn, Yn−1) ≥ 1. Now for n > m ≥ 2, we define
znm := Aym − As(n)ym. Then by the conditions on the subspaces Ym we get
znm ∈ Yn−1, and

||Ayn −Aym|| = ||snyn − znm|| = |sn| · ||yn − s−1
n znm|| ≥ |sn| > r.
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Thus the sequence n 7→ Ayn has no convergent subsequence, although it is bounded.
Therefore A is not compact, a contradiction.
Now suppose that the first assertion is wrong. Then there is a S 6= 0 with AS

surjective. Then define Yn := ker(An
S). Now, as S is an eigenvalue of A, Y1 is not

empty. We choose an y1 ∈ Y1 and inductively yn with ASyn+1 = yn, then we have
automatically yn ∈ Yn \ Yn−1. The second property of the Yn holds as AS and A
commute, in the third we choose s(i) := S.
For the second assertion assume that there is an infinite sequence en of pairwise
distinct eigenvalues in Er. Then choose associated eigenvectors en and define define
Yn := span(e1, ...en). It is very easy to check that these subspaces, which are finite-
dimensional and thus closed, have the required properties. 2

Theorem 4.17 Let X be a Banach space, A ∈ BL(X) compact, and s ∈ K \ {0}.
Then the spaces ker(As) and X/As(X) have the same finite dimension.

Proof. First we prove that dim(ker(As)) ≤ dim(X/As(X)). Assume the opposite.
Then, as ker(As) is finite-dimensional, both subspaces are complemented and there
are decompositions X = ker(As)⊕ E = As(X)⊕G for closed subspaces E and G.
Let p be the corresponding continuous projection to ker(As). Now if, as assumed,
dim(kerAs) > dimG, there is a linear noninjective but surjective map f : kerAs →,
and we define F := A + f ◦ p, this is continuous, linear and even compact, as f has
finite-dimensional image. Now we have F − s1 = As + f ◦ p and thus

(F − s1)(E) = S(E). (1)

On the other hand, we have

(F − s1)|ker(As) = f |ker(As). (2)

As f(kerAs) = G, by Equations 1 and 2 we get (F−s1)(X) = As(X)+G = X. But
if we apply Equation 2 to a vector x0 6= 0 with f(x0) = 0 which exists because of
noninjectivity of f , it turns out that s is an eigenvector of F , therefore F−s1 cannot
be surjective, a contradiction. The other direction dim(ker(As)) ≥ dim(X/As(X))
is left as an exercise. 2

Theorem 4.18 Let X, Y be Banach spaces, Ai ∈ BL(X, Y ) with Ai(X) finite-
dimensional, and let Ai → A ∈ BL(X, Y ). Then A is compact.

Proof: Exercise. 2

If the Banach space has a Schauder basis, also the converse is true:

Theorem 4.19 (Approximation property) Let X, Y be Banach spaces, X with
Schauder basis, let A ∈ BL(X, Y ) be compact, then there are Ai ∈ BL(X, Y ) with
Ai(X) finite-dimensional and Ai → A.

Therefore, as every Banach space is metrizable, in a Banach space with Schauder
basis the compact operators are exactly the topological closure of the operators
with finite-dimensional range.

Exercise: Let X be a Banach space over K . Let A : X → X be a compact operator
and λ ∈ K \ {0}. Prove that the equation

Af − λf = g
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has either a unique solution f ∈ X for every g ∈ X or there are some g1, g2 ∈ X
with no solution whatsoever for g1 and infinitely many solutions for g2.

Exercise: Let (Ω, µ) be a σ-finite measured space, and let µ2 := µ × µ be the
product measure on Ω× Ω, and K ∈ L2(µ× µ). Define, for f ∈ L2(µ) =: X,

AKf(s) :=
∫

Ω

K(s, t)f(t)dµ(t).

(a) Prove that A ∈ B(X, X) with ||A|| ≤
√∫

Ω×Ω
|K(s, t)|2dµ(s)dµ(t).

(b) For any ai, bi ∈ X, i = 1, ...n, define K(1)(s, t) :=
∑

ai(s)bi(t). Show that this
is an element of L2(µ× µ) and that AK(1)(X) is n-dimensional.
(c) Show that for every K , AK is compact.
(d) Now apply this to the case (Ω, µ) := ([0, 1], dt) and K = 1 and show that the
equation ∫ s

0

f(t)dt + λf(s) = g(s)

has a solution for every g ∈ L2([0, 1]).

Exercise: Read now the primer about the Inverse Function Theorem in Banach
spaces by Ralph Howard!
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